MATH 5061 Solution to Problem Set 41

1. Prove that the upper half plane R := {(z,y) € R? : y > 0} with the Riemannian metric g = %(dm +dy?)
is complete.

Solution:

We will show R? is geodesically complete w.r.t g = %(d:ﬂ2 +dy?). That is, any
geodesic yo(t) : (—e,€) — R3 can be extended infinity at both side.

First, we note v(t) = (0,¢) is a geodesic. Indeed, for any new curve c(t) :
[0,1] — RZ jointing (0, a), (0,b) with , we have
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So by the minimizing properties of geodesics, we know ~(t) is indeed a
geodesic.
Moreover, v can be extended to infinity at both side by noting
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Now, we can try to convert any other geodesics to this standard y-axis.
Note the linear fractional transformation z — %% with a,b,¢,d € R, ad —

chrd
be > 0 is a isometry of R? . Indeed, suppose g = |Imz\2 dzdz and w = Zzzis, then
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Hence, for any geodesic 79 above, we can use the isometric transformation
o(z) = %&‘g{)) to get 7o := ¢ 0y is a geodesic such that ¢ o vy(0) = (0, 1).
Without loss of generality, we assume g is parametric by arc length.
Now let’s consider the isometric transformation ¥(z) = ==
decided later on. Clearly (i) = 4, hence ¥ 0 ¥,(0) = (0,1). Now let’s calculate

the differential of ¢ at zp := ¢ = (0,1) and we can get
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So dip., acts on T, R’ like the rotation. If 43(0) # (0,1), we can always

find a € R such that };gi = (%(O))_1 as a complex number by solving a simple

equation. Hence the geodesic 7 defined by v o 4y will pass through (0,1) and
7' (0) = (0,1). By the uniqueness of geodesic we know 7 will coincide with ~
after reparameterization. Hence 7 and 7y can be extended to infinity at both
side.

So by Hopf-Rinow theorem, we know Ri is complete.

2. Let (M™,g) be a complete Riemannian manifold. Suppose there exists constants ¢ > 0 and ¢ > 0 such
that for all pairs of points p,q in M, and for all minimizing geodesics 7(s), which is parametrized by arc
length, joining p to ¢, we have

Ric(7'(s),7'(s)) = a + % along 7,

where f is a functions of s such that |f(s)| < ¢ along v. Prove that (M™, g) is compact.

Solution:

Let vy : [0,1] — (M", g) be the minimizing geodesic jointing p, ¢ € M parametrized
by arc length where | = dist(p, ¢). We will provel < [y := max {82”, \/ W}

by contradiction.

Suppose | > ly, we will fix a parallel orthonormal basis {e;(t), -, e,—1(t), 7' ()}
along 7.

We define V;(t) := (sin(%t))e;(t), so V;(0) = V;(I) = 0. We can calculate the
second variation of energy to get
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After taking sum over ¢ = 1,--- ,n — 1, we have
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This E(0) < 0 for some ¢, which contradicts v being minimizing.
Hence by Hopf-Rinow theorem, we know M is compact since it has finite
diameter.



3. Let (M™,g) be a complete Riemannian manifold with non-positive sectional curvature, i.e. K < 0. Show
that any homotopy class of paths with fixed end points p and ¢ in M contains a unique geodesic.

Solution:

If K <0, then exp, : T,M — M is a covering map by Cartan-Hadamard
Theorem. Let expj(g) be the metric on T),M to make exp, be a local isometry.

For any path c jointing p, ¢, we can get a lifting path ¢ inside 7}, M jointing
0 and some ¢ € exp, 1(g). Note that there exists a unique geodesic in T, M
jointing 0, ¢ giving by 7(t) = tq since all the geodesics starting form 0 is the
radical rays.

So exp,(¥) will give a geodesic jointing p, ¢ which is homotopic to c. Note
for any curves homotopic to ¢ and jointing p, ¢ can be lifted to a curve jointing
0, G, we know if there is another geodesic jointing p,q will give another lifting
geodesic jointing 0, ¢, hence it should coincide with 4. Hence the uniqueness of
geodesic jointing p, ¢ has be proved.

4. Show that any even dimensional complete manifold with constant positive sectional curvature is isometric
to either S2" or RP?*" equipped with the canonical round metric.

Solution:

Let M be the even dimensional complete manifold with constant positive sec-
tional curvature. We know M is compact by Bonnet-Myers theorem.

By Synge Theorem, we know if M is orientable, then M is simply con-
nected. So by classification of spaces of constant sectional curvature, we know
M isometry to the standard sphere S”.

If M is non-orientable, we consider M, the orientation covering space of M.
Now by above theorem, we know M isometric to S**. So M will be a quotient
space of S? under a isometric action ¢ : S — S?" that ¢ o ¢ = Idge» and ¢
reverses the orientation on S?”. We want to show ¢ is an antipodal map.

Indeed, we know ¢ € O(2n+1) by standard argument. (see Ex. 2 in Problem
Set 3) Let A be the matrix form of ¢. Note A% = Isp 41, we know the eigenvalues
of A can only be 1 or —1. Since the action ¢ is free (has no fix point), A cannot
take 1 to be a eigenvalue. So A = —I5,1 and hence ¢(x) = —z, which is an
antipodal map.

Hence M will isometric to the standard RP?" with the canonical round
metric.



5. Using the identification C? = R*, we denote the unit sphere by S3 := {(z1,22) € C? : |21]? + |22]* = 1}.
Let h: S* — S? be the smooth map given by

27w 2nr g

h(z1,22) = (e7a 'z1,e 0 "23)

where ¢ and r are relatively prime integers with ¢ > 2.

(a) Show that G = {id,h,--- ,h?" 1} is a group of isometries of the sphere S* with the standard round
metric. Prove that the quotient space S?/G is a smooth manifold. This is called a lens space.

(b) Suppose the lens space S?/G is equipped with the natural Riemannian metric such that the projection
map 7 : S* — S3/G is a local isometry. Show that all the geodesics of S?/G are closed but can have
different lengths.

Solution:

(a). We can extend h to the action on C? just by

27 2nr
h(z1,22) = (e 7'21,e a ’ZQ) )

The standard metric on C? is given by g = |dz; |2—|— |dzo |2. Hence the pullback

metric under h is given by
h*g = ‘e%ﬂidzlr + ’e%id@r = |dz1 | + |dza|” .

Hence h and so h* are isometries of C2. After restriction to S®, we know
G = {id, h,--- ,h971} is a group of isometries of S3.

Note that h* acts on S? is free for k = 1,--- ,¢q — 1 since g, r are relatively

prime. So the quotient space S?/G is a smooth manifold. (G is a discrete group
acting smoothly, freely, and properly on S3. Properly is easy to see since S? is
compact.)
(b). For any y € S®/G, we can find a small neighborhood y € V,, C S3/G and
z € U, C S® such that € 7~ !(y) and 7 is a diffeomorphism between U,V
by the properties of covering map. Now we can define the Riemannian metric
in V, by (771)" gss where ggs is the standard metric on S®.

Now we need to check this is well-defined metric on V},. For another point
7 € 3 with m(%) = y, we know there is k € Z such that h*(x) = Z. So h¥(U,)
is a neighborhood of # such that 7 is a diffeomorphism between h*(U,),V,,.
Now (77 1)*| s, )9ss will given another definition of metric. But we note
(7= 1)*(h*)*ggs = (77 1)*ggs since h is an isometry, we know they give the same
definition of metric.

Hence, we have a well-defined metric g, on V,,. Moreover, we can see the re-
lation 7*g, = gs3|r-1(v,). Hence gy, , gy, will agree with each other for different
y; and neighborhood on their common area. So we can form a global metric g
on S?/G such that 7*g = gss and moreover, 7 will be a local isometry.



Now, for any geodesic v in S /G, we can consider its lifting 7. Clearly 7 will
be a geodesic arc in S? jointing p and ¢ for some p,q € S3. Note the geodesic
in S? is just a part of great circles, so we can extend 7 to be a closed geodesic.
Hence the geodesic 7 o 4 will extend v and become a closed geodesic in S3/G.

Now let’s consider the curves c(t) = (e,0) € S®. It is a geodesic since
it just a big circle on S3. Moreover, h* o ¢ will be the same geodesic upto
reparameterization. This actually shows G acts on S := {(e®,0) : t € R} freely
and properly. So the after taking quotient, we can get S' covering a closed
geodesic in S?/G precisely ¢ times. Hence the quotient of ¢ will have length %’r
if we don’t count multiplicity.

On the other hand, for any closed geodesic v(t) : [0,1] — S3/G, we can lift to
S? to get a geodesic arc 7 jointing p, h*(p) for some 0 < k < g — 1. By the local
isometry, we know 7.7 (0) = m.7'(1) = 9/(0). So h¥3(0) = 4(1). This mean
h* 07 will be a extension of 7. Let c(t) be the great circle that 7 lying. If k # 0,
we actually know h will fix the great circle ¢(t) since k,q are coprime. Same
reason above shows the length of v will be %’r if we do not count multiplicity.

So if we consider the geodesic ¢(t) = (cost,0,0,sint). This time A will map
c(t) to another geodesic on S%. At least we note h¥(c(0)) will be different ¢
points for k =0,--- ,q — 1, so h* o ¢ will be ¢ different geodesics. By above we
know 7o c(t) cannot have length less than 27. So we know length of 7o ¢(t) has
length 27.



